Whole-Stream Response to Nitrate Loading in Three Streams Draining Agricultural Landscapes

John H. Duff ,* Anthony J. Tesoriero, and William B. Richardson USGS Eric A. Strauss University of Wisconsin–La Crosse Mark D. Munn USGS

Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO₃⁻) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach level NO₃⁻ sources, NO₃⁻ mass balance, in-stream processing (nitrification, denitrification, and NO₃ uptake), and NO₃ retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO₃⁻ input. Streambed processes potentially reduced 45 to 75% of ground water NO₃⁻ before discharge to surface water. In all streams, transient storage was of little importance for surface water NO₃⁻ retention. Estimated nitrification (1.6–4.4 mg N m⁻² h⁻¹) and unamended denitrification rates (2.0–16.3 mg N m⁻² h⁻¹) in sediment slurries were high relative to pristine streams. Denitrification of NO₃⁻ was largely independent of nitrification because both stream and ground water were sources of NO₃-. Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO₃⁻ exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO₃⁻ inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO₃⁻ variation. Biotic processing potentially removed 75% of ground water NO₃⁻ at this site, suggesting an important role for photosynthetic assimilation of ground water NO₃⁻ relative to subsurface denitrification as water passed directly through benthic diatom beds.